p53 protein at the hub of cellular DNA damage response pathways through sequence-specific and non-sequence-specific DNA binding.

نویسندگان

  • Y Liu
  • M Kulesz-Martin
چکیده

Our environment contains physical, chemical and pathological agents that challenge the integrity of our DNA. In addition to DNA repair, higher multicellular organisms have evolved multiple pathways of response to damage including programmed cell death-apoptosis. The p53 protein appears to sense multiple types of DNA damage and coordinate with multiple options for cellular response. The p53 protein activities depend upon its DNA binding. Specific p53 protein post-translational modifications are required for efficient sequence-specific binding and transcriptional activities. Non-sequence-specific DNA binding may involve a wide spectrum of p53 proteins and predominate as DNA damage is more severe or p53 protein is more highly induced. p53 protein is not strictly required for DNA damage sensing and repair. Rather, p53 protein may govern an apoptosis checkpoint through competition with DNA repair proteins for non-sequence-specific binding to exposed single-stranded regions in the DNA duplex. This model provides a framework for testing mechanisms of p53-mediated apoptosis dependent upon the p53 protein modification state, the level of p53 protein accumulation, the level of DNA damage and the capacity of the damaged cell to repair.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of p53 sequence-specific DNA bindingby short single strands of DNA requires the p53 C-terminus

Upon cellular DNA damage, the p53 tumor suppressor protein transmits a signal to genes that control the cell cycle and apoptosis. One function of p53 that is important for its role in this pathway is its ability to function as a sequence-specific transcriptional activator. We demonstrate here that short single DNA strands can markedly stimulate the ability of human and murine p53 proteins to bi...

متن کامل

DNA topology influences p53 sequence-specific DNA binding through structural transitions within the target sites.

The tumour suppressor protein p53 is one of the most important factors regulating cell proliferation, differentiation and programmed cell death in response to a variety of cellular stress signals. P53 is a nuclear phosphoprotein and its biochemical function is closely associated with its ability to bind DNA in a sequence-specific manner and operate as a transcription factor. Using a competition...

متن کامل

Activation of the transcription factor Oct-1 in response to DNA damage.

Mammalian cells exhibit complex cellular responses to genotoxic stress, including cell cycle checkpoint, DNA repair, and apoptosis. Inactivation of these important biological events will result in genomic instability and cell transformation. It has been demonstrated that gene activation is a critical initial step during the cellular response to DNA damage. A number of investigations have shown ...

متن کامل

The Role of chk2 in Response to DNA Damage in Cancer Cells

Accumulation of gene changes and chromosomal instability in response to cellular DNA damage lead to cancer. DNA damage induces cell cycle checkpoints pathways. Checkpoints regulate DNA replication and cell cycle progression, chromatin restructuring, and apoptosis. Checkpoint kinase 2 (chk2) is activated in response to DNA lesions. ATM phosphorylate chk2. The activated Chk2 kinase can phosphoryl...

متن کامل

The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks

DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Carcinogenesis

دوره 22 6  شماره 

صفحات  -

تاریخ انتشار 2001